2H and 13C NMR studies on the temperature-dependent water and protein dynamics in hydrated elastin, myoglobin and collagen.
نویسندگان
چکیده
(2)H NMR spin-lattice relaxation and line-shape analyses are performed to study the temperature-dependent dynamics of water in the hydration shells of myoglobin, elastin, and collagen. The results show that the dynamical behaviors of the hydration waters are similar for these proteins when using comparable hydration levels of h=0.25-0.43. Since water dynamics is characterized by strongly nonexponential correlation functions, we use a Cole-Cole spectral density for spin-lattice relaxation analysis, leading to correlation times, which are in nice agreement with results for the main dielectric relaxation process observed for various proteins in the literature. The temperature dependence can roughly be described by an Arrhenius law, with the possibility of a weak crossover in the vicinity of 220 K. Near ambient temperatures, the results substantially depend on the exact shape of the spectral density so that deviations from an Arrhenius behavior cannot be excluded in the high-temperature regime. However, for the studied proteins, the data give no evidence for the existence of a sharp fragile-to-strong transition reported for lysozyme at about 220 K. Line-shape analysis reveals that the mechanism for the rotational motion of hydration waters changes in the vicinity of 220 K. For myoglobin, we observe an isotropic motion at high temperatures and an anisotropic large-amplitude motion at low temperatures. Both mechanisms coexist in the vicinity of 220 K. (13)C CP MAS spectra show that hydration results in enhanced elastin dynamics at ambient temperatures, where the enhancement varies among different amino acids. Upon cooling, the enhanced mobility decreases. Comparison of (2)H and (13)C NMR data reveals that the observed protein dynamics is slower than the water dynamics.
منابع مشابه
Ab Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.
In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...
متن کاملThermodynamics, Solvents effects and 1H ,13C NMR Shielding :Theoretical studies of Adamantane
Some of the Adamantane properties were calculated in this study. Chemical shift, free energy ofsolvation, free energy of cavity formation, Henry's law constant, and other properties ofAdamantane in dry phase, three solvents and three temperatures have been calculated with Abinitio method base on density functional theory (DFT) at B3lyp/6-31g, B31yp/6-31g*, B3lyp/6-31+g* and B3lyp/6-31++g** leve...
متن کاملQuantitative observation of backbone disorder in native elastin.
Elastin is a key protein in soft tissue function and pathology. Establishing a structural basis for understanding its reversible elasticity has proven to be difficult. Complementary to structure is the important aspect of flexibility and disorder in elastin. We have used solid-state NMR methods to examine polypeptide and hydrate ordering in both elastic (hydrated) and brittle (dry) elastin fibe...
متن کاملساختار و مراحل ترمیم پوست
Skin injury caused by burns, surgery and other traumas may result in unpleasant psychological experiences and be reflected in behaviors. Extracellular matrix (ECM) is the largest component of natural skin which is gel-like and is produced by skin cells. ECM synthesis is a key factor for filling up skin wounds such as burns, leishmaniasis, chicken pox, acne, etc. ECM is composed of a variety of ...
متن کاملNuclear magnetic resonance studies of amino acids and proteins. Side-chain mobility of methionine in the crystalline amino acid and in crystalline sperm whale (Physeter catodon) myoglobin.
We have obtained deuterium (2H) nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times (T1) of L-[epsilon-2H3]methionine, L-[epsilon-2H3]methionine in a D,L lattice, and [S-methyl-2H3]methionine in the crystalline solid state, as a function of temperature, in addition to obtaining 2H T1 and line-width results as a function of temperature on [epsilon-2H3]methionine-labeled sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1804 1 شماره
صفحات -
تاریخ انتشار 2010